Nonlinear variational method for predicting fast collisionless magnetic reconnection
نویسندگان
چکیده
A mechanism for fast magnetic reconnection in collisionless plasma is studied for understanding sawtooth collapse in tokamak discharges using a two-fluid model for cold ions and electrons. Explosive growth of the tearing mode enabled by electron inertia is analytically estimated using an energy principle with a nonlinear displacement map. Decrease in the potential energy in the nonlinear regime (where the island width exceeds the electron skin depth) is found to be steeper than in the linear regime, resulting in accelerated reconnection. Release of potential energy by such a fluid displacement leads to unsteady and strong convective flow, which is not damped by the small dissipation effects in high-temperature tokamak plasmas. Direct numerical simulation in slab geometry substantiates the theoretical prediction of the nonlinear growth. (Some figures may appear in colour only in the online journal)
منابع مشابه
Role of dispersive waves in collisionless magnetic reconnection.
Simulations of collisionless magnetic reconnection show a dramatic enhancement of the nonlinear reconnection rate due to the formation of an open outflow region. We link the formation of this open configuration to dispersive whistler and kinetic Alfvén wave dynamics at small scales. The roles of these two waves are controlled by two dimensionless parameters, which allow us to identify regions o...
متن کاملNonlinear Acceleration Mechanism of Collisionless Magnetic Reconnection
A mechanism for fast magnetic reconnection in collisionless plasma is studied for understanding sawtooth collapse in tokamak discharges. Nonlinear growth of the tearing mode driven by electron inertia is analytically estimated by invoking the energy principle for the first time. Decrease of potential energy in the nonlinear regime (where the island width exceeds the electron skin depth) is foun...
متن کاملComparison between resistive and collisionless double tearing modes for nearby resonant surfaces
The linear instability and nonlinear dynamics of collisional (resistive) and collisionless (due to electron inertia) double tearing modes (DTMs) are compared with the use of a reduced cylindrical model of a tokamak plasma. We focus on cases where two q = 2 resonant surfaces are located a small distance apart. It is found that regardless of the magnetic reconnection mechanism, resistivity or ele...
متن کاملFast Collisionless Reconnection Condition and Self-organization of Solar Coronal Heating
I propose that solar coronal heating is a self-regulating process that keeps the coronal plasma roughly marginally collisionless. The self-regulating mechanism is based on the interplay of two effects. First, plasma density controls coronal energy release via the transition between the slow collisional Sweet– Parker regime and the fast collisionless reconnection regime. This transition takes pl...
متن کاملReconnection in Marginally Collisionless Accretion Disk Coronae
We point out that a conventional construction placed upon observations of accreting black holes, in which their nonthermal X-ray spectra are produced by inverse comptonization in a coronal plasma, suggests that the plasma is marginally collisionless. Recent developments in plasma physics indicate that fast reconnection takes place only in collisionless plasmas. As has recently been suggested fo...
متن کامل